Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Acta Neuropathol Commun ; 12(1): 52, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576010

RESUMO

The transcellular propagation of the aberrantly modified protein tau along the functional brain network is a key hallmark of Alzheimer's disease and related tauopathies. Inoculation-based tau propagation models can recapitulate the stereotypical spread of tau and reproduce various types of tau inclusions linked to specific tauopathy, albeit with varying degrees of fidelity. With this systematic review, we underscore the significance of judicious selection and meticulous functional, biochemical, and biophysical characterization of various tau inocula. Furthermore, we highlight the necessity of choosing suitable animal models and inoculation sites, along with the critical need for validation of fibrillary pathology using confirmatory staining, to accurately recapitulate disease-specific inclusions. As a practical guide, we put forth a framework for establishing a benchmark of inoculation-based tau propagation models that holds promise for use in preclinical testing of disease-modifying drugs.


Assuntos
Doença de Alzheimer , Tauopatias , Animais , Doença de Alzheimer/patologia , Emaranhados Neurofibrilares/patologia , Modelos Animais de Doenças , Tauopatias/patologia , Proteínas tau/metabolismo , Encéfalo/patologia
2.
iScience ; 26(8): 107400, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37554441

RESUMO

The glycine receptor alpha 2 (GlyRα2) is a ligand-gated ion channel which upon activation induces a chloride conductance. Here, we investigated the role of GlyRα2 in dopamine-stimulated striatal cell activity and behavior. We show that depletion of GlyRα2 enhances dopamine-induced increases in the activity of putative dopamine D1 receptor-expressing striatal projection neurons, but does not alter midbrain dopamine neuron activity. We next show that the locomotor response to d-amphetamine is enhanced in GlyRα2 knockout animals, and that this increase correlates with c-fos expression in the dorsal striatum. 3-D modeling revealed an increase in the neuronal ensemble size in the striatum in response to D-amphetamine in GlyRα2 KO mice. Finally, we show enhanced appetitive conditioning in GlyRα2 KO animals that is likely due to increased motivation, but not changes in associative learning or hedonic response. Taken together, we show that GlyRα2 is an important regulator of dopamine-stimulated striatal activity and function.

3.
Alzheimers Dement ; 19(12): 5885-5904, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37563912

RESUMO

INTRODUCTION: Artificial intelligence (AI) and neuroimaging offer new opportunities for diagnosis and prognosis of dementia. METHODS: We systematically reviewed studies reporting AI for neuroimaging in diagnosis and/or prognosis of cognitive neurodegenerative diseases. RESULTS: A total of 255 studies were identified. Most studies relied on the Alzheimer's Disease Neuroimaging Initiative dataset. Algorithmic classifiers were the most commonly used AI method (48%) and discriminative models performed best for differentiating Alzheimer's disease from controls. The accuracy of algorithms varied with the patient cohort, imaging modalities, and stratifiers used. Few studies performed validation in an independent cohort. DISCUSSION: The literature has several methodological limitations including lack of sufficient algorithm development descriptions and standard definitions. We make recommendations to improve model validation including addressing key clinical questions, providing sufficient description of AI methods and validating findings in independent datasets. Collaborative approaches between experts in AI and medicine will help achieve the promising potential of AI tools in practice. HIGHLIGHTS: There has been a rapid expansion in the use of machine learning for diagnosis and prognosis in neurodegenerative disease Most studies (71%) relied on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset with no other individual dataset used more than five times There has been a recent rise in the use of more complex discriminative models (e.g., neural networks) that performed better than other classifiers for classification of AD vs healthy controls We make recommendations to address methodological considerations, addressing key clinical questions, and validation We also make recommendations for the field more broadly to standardize outcome measures, address gaps in the literature, and monitor sources of bias.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/diagnóstico por imagem , Prognóstico , Inteligência Artificial , Encéfalo/diagnóstico por imagem , Neuroimagem/métodos
4.
Cell ; 186(4): 693-714, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36803602

RESUMO

Decades of research have identified genetic factors and biochemical pathways involved in neurodegenerative diseases (NDDs). We present evidence for the following eight hallmarks of NDD: pathological protein aggregation, synaptic and neuronal network dysfunction, aberrant proteostasis, cytoskeletal abnormalities, altered energy homeostasis, DNA and RNA defects, inflammation, and neuronal cell death. We describe the hallmarks, their biomarkers, and their interactions as a framework to study NDDs using a holistic approach. The framework can serve as a basis for defining pathogenic mechanisms, categorizing different NDDs based on their primary hallmarks, stratifying patients within a specific NDD, and designing multi-targeted, personalized therapies to effectively halt NDDs.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/patologia , Proteostase , Agregação Patológica de Proteínas/metabolismo , Morte Celular , Citoesqueleto/metabolismo
5.
Acta Neuropathol ; 144(3): 489-508, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35796870

RESUMO

Blood-based (BB) biomarkers for Aß and tau can indicate pathological processes in the brain, in the early pathological, even pre-symptomatic stages in Alzheimer's disease. However, the relation between BB biomarkers and AD-related processes in the brain in the earliest pre-pathology stage before amyloid pathology develops, and their relation with total brain concentrations of Aß and tau, is poorly understood. This stage presents a critical window for the earliest prevention of AD. Preclinical models with well-defined temporal progression to robust amyloid and tau pathology provide a unique opportunity to study this relation and were used here to study the link between BB biomarkers with AD-related processes in pre- and pathological stages. We performed a cross-sectional study at different ages assessing the link between BB concentrations and AD-related processes in the brain. This was complemented with a longitudinal analysis and with analysis of age-related changes in a small cohort of human subjects. We found that BB-tau concentrations increased in serum, correlating with progressive development of tau pathology and with increasing tau aggregates and p-tau concentrations in brain in TauP301S mice (PS19) developing tauopathy. BB-Aß42 concentrations in serum decreased between 4.5 and 9 months of age, correlating with the progressive development of robust amyloid pathology in APP/PS1 (5xFAD) mice, in line with previous findings. Most importantly, BB-Aß42 concentrations significantly increased between 1.5 and 4.5 months, i.e., in the earliest pre-pathological stage, before robust amyloid pathology develops in the brain, indicating biphasic BB-Aß42 dynamics. Furthermore, increasing BB-Aß42 in the pre-pathological phase, strongly correlated with increasing Aß42 concentrations in brain. Our subsequent longitudinal analysis of BB-Aß42 in 5xFAD mice, confirmed biphasic BB-Aß42, with an initial increase, before decreasing with progressive robust pathology. Furthermore, in human samples, BB-Aß42 concentrations were significantly higher in old (> 60 years) compared to young (< 50 years) subjects, as well as to age-matched AD patients, further supporting age-dependent increase of Aß42 concentrations in the earliest pre-pathological phase, before amyloid pathology. Also BB-Aß40 concentrations were found to increase in the earliest pre-pathological phase both in preclinical models and human subjects, while subsequent significantly decreasing concentrations in the pathological phase were characteristic for BB-Aß42. Together our data indicate that BB biomarkers reflect pathological processes in brain of preclinical models with amyloid and tau pathology, both in the pathological and pre-pathological phase. Our data indicate a biphasic pattern of BB-Aß42 in preclinical models and a human cohort. And most importantly, we here show that BB-Aß increased and correlated with increasing concentrations of Aß in the brain, in the earliest pre-pathological stage in a preclinical model. Our data thereby identify a novel critical window for prevention, using BB-Aß as marker for accumulating Aß in the brain, in the earliest pre-pathological stage, opening new avenues for personalized early preventive strategies against AD, even before amyloid pathology develops.


Assuntos
Doença de Alzheimer , Amiloidose , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Animais , Biomarcadores , Estudos Transversais , Humanos , Camundongos , Fragmentos de Peptídeos , Sujeitos da Pesquisa , Proteínas tau
6.
Glia ; 70(6): 1117-1132, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35174546

RESUMO

An active role of neuroinflammation and the NLRP3 inflammasome in Alzheimer's disease and related tauopathies is increasingly identified, supporting NLRP3 as an interesting therapeutic target. However, its effect on tau-associated neurodegeneration, a key-process in tauopathies, remains unknown. While tau pathology and neurodegeneration are closely correlated, different tau forms may act as culprits in both characteristics and NLRP3-dependent microglial processes may differently affect both processes, indicating the need to study the role of NLRP3 in both processes concomitantly. To study the role of NLRP3 on tau pathology, prion-like propagation and tau-associated neurodegeneration we generated crosses of NLRP3 deficient mice with tauP301S (PS19) transgenic mice. In this model we studied non-seeded tau pathology and hippocampal atrophy, reminiscent characteristics of tauopathies. Tau pathology in hippocampus and cortex was significantly decreased in tau.NLRP3-/- versus tau.NLRP3+/+ mice. Importantly, tau.NLRP3-/- mice also displayed significantly decreased hippocampal atrophy, indicating a role of NLRP3 in neurodegeneration. We furthermore assessed the effect of NLRP3 deficiency on tau propagation and associated hippocampal atrophy. NLRP3 deficiency significantly decreased prion-like seeding and propagation of tau pathology, reflected in decreased tau pathology in ipsi- and contralateral hippocampus and cortex in tau.NLRP3-/- following tau seeding. Most importantly, hippocampal atrophy was significantly less in tau-seeded tau.NLRP3-/- mice at 8 months. We here demonstrate for the first time that NLRP3 activation affects tau-associated neurodegeneration and seeded and non-seeded tau pathology, hence affecting key molecular processes in tauopathies. Our data thereby provide key-information in the validation of NLRP3 inflammasome as therapeutic target for AD and related tauopathies.


Assuntos
Inflamassomos , Tauopatias , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Tauopatias/patologia , Proteínas tau/genética
7.
Acta Neuropathol Commun ; 9(1): 108, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103079

RESUMO

Alzheimer's disease (AD) is characterized by a sequential progression of amyloid plaques (A), neurofibrillary tangles (T) and neurodegeneration (N), constituting ATN pathology. While microglia are considered key contributors to AD pathogenesis, their contribution in the combined presence of ATN pathologies remains incompletely understood. As sensors of the brain microenvironment, microglial phenotypes and contributions are importantly defined by the pathologies in the brain, indicating the need for their analysis in preclinical models that recapitulate combined ATN pathologies, besides their role in A and T models only. Here, we report a new tau-seed model in which amyloid pathology facilitates bilateral tau propagation associated with brain atrophy, thereby recapitulating robust ATN pathology. Single-cell RNA sequencing revealed that ATN pathology exacerbated microglial activation towards disease-associated microglia states, with a significant upregulation of Apoe as compared to amyloid-only models (A). Importantly, Colony-Stimulating Factor 1 Receptor inhibition preferentially eliminated non-plaque-associated versus plaque associated microglia. The preferential depletion of non-plaque-associated microglia significantly attenuated tau pathology and neuronal atrophy, indicating their detrimental role during ATN progression. Together, our data reveal the intricacies of microglial activation and their contributions to pathology in a model that recapitulates the combined ATN pathologies of AD. Our data may provide a basis for microglia-targeting therapies selectively targeting detrimental microglial populations, while conserving protective populations.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Modelos Animais de Doenças , Microglia/patologia , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Humanos , Camundongos , Microglia/metabolismo , Degeneração Neural/patologia , Emaranhados Neurofibrilares/patologia , Placa Amiloide/patologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Proteínas tau/genética
8.
JAMA Neurol ; 76(8): 915-924, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31157827

RESUMO

IMPORTANCE: Positron emission tomography (PET) imaging now allows in vivo visualization of both neuropathologic hallmarks of Alzheimer disease (AD): amyloid-ß (Aß) plaques and tau neurofibrillary tangles. Observing their progressive accumulation in the brains of clinically normal older adults is critically important to understand the pathophysiologic cascade leading to AD and to inform the choice of outcome measures in prevention trials. OBJECTIVE: To assess the associations among Aß, tau, and cognition, measured during different observation periods for 7 years. DESIGN, SETTING, AND PARTICIPANTS: Prospective cohort study conducted between 2010 and 2017 at the Harvard Aging Brain Study, Boston, Massachusetts. The study enrolled 279 clinically normal participants. An additional 90 individuals were approached but declined the study or did not meet the inclusion criteria. In this report, we analyzed data from 60 participants who had multiple Aß and tau PET observations available on October 31, 2017. MAIN OUTCOMES AND MEASURES: A median of 3 Pittsburgh compound B-PET (Aß, 2010-2017) and 2 flortaucipir-PET (tau, 2013-2017) images were collected. We used initial PET and slope data, assessing the rates of change in Aß and tau, to measure cognitive changes. Cognition was evaluated annually using the Preclinical Alzheimer Cognitive Composite (2010-2017). Annual consensus meetings evaluated progression to mild cognitive impairment. RESULTS: Of the 60 participants, 35 were women (58%) and 25 were men (42%); median age at inclusion was 73 years (range, 65-85 years). Seventeen participants (28%) exhibited an initial high Aß burden. An antecedent rise in Aß was associated with subsequent changes in tau (1.07 flortaucipir standardized uptake value ratios [SUVr]/PiB-SUVr; 95% CI, 0.13-3.46; P = .02). Tau changes were associated with cognitive changes (-3.28 z scores/SUVR; 95% CI, -6.67 to -0.91; P = .001), covarying baseline Aß and tau. Tau changes were greater in the participants who progressed to mild cognitive impairment (n = 6) than in those who did not (n = 11; 0.05 SUVr per year; 95% CI, 0.03-0.07; P = .001). A serial mediation model demonstrated that the association between initial Aß and final cognition, measured 7 years later, was mediated by successive changes in Aß and tau. CONCLUSIONS AND RELEVANCE: We identified sequential changes in normal older adults, from Aß to tau to cognition, after which the participants with high Aß with greater tau increase met clinical criteria for mild cognitive impairment. These findings highlight the importance of repeated tau-PET observations to track disease progression and the importance of repeated amyloid-PET observations to detect the earliest AD pathologic changes.

9.
Life Sci Alliance ; 2(2)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30894406

RESUMO

Mechanisms driving cognitive improvements following nuclear receptor activation are poorly understood. The peroxisome proliferator-activated nuclear receptor alpha (PPARα) forms heterodimers with the nuclear retinoid X receptor (RXR). We report that PPARα mediates the improvement of hippocampal synaptic plasticity upon RXR activation in a transgenic mouse model with cognitive deficits. This improvement results from an increase in GluA1 subunit expression of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, eliciting an AMPA response at the excitatory synapses. Associated with a two times higher PPARα expression in males than in females, we show that male, but not female, PPARα null mutants display impaired hippocampal long-term potentiation. Moreover, PPARα knockdown in the hippocampus of cognition-impaired mice compromises the beneficial effects of RXR activation on synaptic plasticity only in males. Furthermore, selective PPARα activation with pemafibrate improves synaptic plasticity in male cognition-impaired mice, but not in females. We conclude that striking sex differences in hippocampal synaptic plasticity are observed in mice, related to differences in PPARα expression levels.


Assuntos
Dosagem de Genes/genética , Potenciação de Longa Duração/genética , Plasticidade Neuronal/genética , PPAR alfa/genética , PPAR alfa/metabolismo , Animais , Benzoxazóis/farmacologia , Butiratos/farmacologia , Células Cultivadas , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , PPAR alfa/agonistas , Ratos , Ratos Wistar , Receptores de AMPA/metabolismo , Receptores X de Retinoides/metabolismo , Fatores Sexuais , Transdução de Sinais/efeitos dos fármacos
10.
Sci Rep ; 9(1): 4908, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894635

RESUMO

Activation of liver X receptors (LXRs) by synthetic agonists was found to improve cognition in Alzheimer's disease (AD) mice. However, these LXR agonists induce hypertriglyceridemia and hepatic steatosis, hampering their use in the clinic. We hypothesized that phytosterols as LXR agonists enhance cognition in AD without affecting plasma and hepatic triglycerides. Phytosterols previously reported to activate LXRs were tested in a luciferase-based LXR reporter assay. Using this assay, we found that phytosterols commonly present in a Western type diet in physiological concentrations do not activate LXRs. However, a lipid extract of the 24(S)-Saringosterol-containing seaweed Sargassum fusiforme did potently activate LXRß. Dietary supplementation of crude Sargassum fusiforme or a Sargassum fusiforme-derived lipid extract to AD mice significantly improved short-term memory and reduced hippocampal Aß plaque load by 81%. Notably, none of the side effects typically induced by full synthetic LXR agonists were observed. In contrast, administration of the synthetic LXRα activator, AZ876, did not improve cognition and resulted in the accumulation of lipid droplets in the liver. Administration of Sargassum fusiforme-derived 24(S)-Saringosterol to cultured neurons reduced the secretion of Aß42. Moreover, conditioned medium from 24(S)-Saringosterol-treated astrocytes added to microglia increased phagocytosis of Aß. Our data show that Sargassum fusiforme improves cognition and alleviates AD pathology. This may be explained at least partly by 24(S)-Saringosterol-mediated LXRß activation.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/genética , Receptores X do Fígado/genética , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/genética , Placa Amiloide/tratamento farmacológico , Sargassum/química , Estigmasterol/análogos & derivados , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Compostos de Anilina/farmacologia , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Cognição/efeitos dos fármacos , Cognição/fisiologia , Meios de Cultivo Condicionados/farmacologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Genes Reporter , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Receptores X do Fígado/agonistas , Receptores X do Fígado/metabolismo , Luciferases/genética , Luciferases/metabolismo , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Transgênicos , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fármacos Neuroprotetores/isolamento & purificação , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/genética , Placa Amiloide/metabolismo , Placa Amiloide/fisiopatologia , Transdução de Sinais , Estigmasterol/isolamento & purificação , Estigmasterol/farmacologia , Tiazóis/farmacologia
11.
Acta Neuropathol ; 137(4): 599-617, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30721409

RESUMO

Brains of Alzheimer's disease patients are characterized by the presence of amyloid plaques and neurofibrillary tangles, both invariably associated with neuroinflammation. A crucial role for NLRP3-ASC inflammasome [NACHT, LRR and PYD domains-containing protein 3 (NLRP3)-Apoptosis-associated speck-like protein containing a CARD (ASC)] in amyloid-beta (Aß)-induced microgliosis and Aß pathology has been unequivocally identified. Aß aggregates activate NLRP3-ASC inflammasome (Halle et al. in Nat Immunol 9:857-865, 2008) and conversely NLRP3-ASC inflammasome activation exacerbates amyloid pathology in vivo (Heneka et al. in Nature 493:674-678, 2013), including by prion-like ASC-speck cross-seeding (Venegas et al. in Nature 552:355-361, 2017). However, the link between inflammasome activation, as crucial sensor of innate immunity, and Tau remains unexplored. Here, we analyzed whether Tau aggregates acting as prion-like Tau seeds can activate NLRP3-ASC inflammasome. We demonstrate that Tau seeds activate NLRP3-ASC-dependent inflammasome in primary microglia, following microglial uptake and lysosomal sorting of Tau seeds. Next, we analyzed the role of inflammasome activation in prion-like or templated seeding of Tau pathology and found significant inhibition of exogenously seeded Tau pathology by ASC deficiency in Tau transgenic mice. We furthermore demonstrate that chronic intracerebral administration of the NLRP3 inhibitor, MCC950, inhibits exogenously seeded Tau pathology. Finally, ASC deficiency also decreased non-exogenously seeded Tau pathology in Tau transgenic mice. Overall our findings demonstrate that Tau-seeding competent, aggregated Tau activates the ASC inflammasome through the NLRP3-ASC axis, and we demonstrate an exacerbating role of the NLRP3-ASC axis on exogenously and non-exogenously seeded Tau pathology in Tau mice in vivo. The NLRP3-ASC inflammasome, which is an important sensor of innate immunity and intensively explored for its role in health and disease, hence presents as an interesting therapeutic approach to target three crucial pathogenetic processes in AD, including prion-like seeding of Tau pathology, Aß pathology and neuroinflammation.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Agregados Proteicos/fisiologia , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Gliose/genética , Gliose/metabolismo , Gliose/patologia , Interleucina-1beta/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Proteínas tau/genética
12.
Adv Exp Med Biol ; 1184: 145-166, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32096036

RESUMO

Tau is most intensely studied in relation to its executive role in Tauopathies, a family of neurodegenerative disorders characterized by the accumulation of Tau aggregates [15, 21, 38, 75, 89, 111, 121, 135, 175, 176, 192]. Tau aggregation in the different Tauopathies differs in the affected cell type, the structure of aggregates and Tau isoform composition. However, in all Tauopathies, accumulation of pathological Tau in well-characterized and well-defined brain regions, correlates strongly with symptoms associated with the dysfunction of this brain region. Hence, symptoms of neurodegenerative Tauopathies can range from motoric to cognitive and behavioral symptoms, even extending to deterioration of vital functions when the disease progresses, or combinations of different symptoms governed by the affected brain regions. The most common Tauopathies are corticobasal degeneration (CBD), Pick's disease, progressive supranuclear palsy (PSP) and frontotemporal dementias with parkinsonism linked to chromosome 17 (FTDP-17). However a growing number of diseases are characterized by Tau aggregation amounting to a large family of more than 20 disorders [176]. Most Tauopathies are sporadic, and are hence linked to a combination of environmental and genetic risk factors. However, mutations in MAPT have been identified which are autosomal dominantly linked to Tauopathies, including FTDP, PSP and CBD [94, 163, 185] (Alzforum, https://www.alzforum.org/mutations/mapt ). More than 80 mutations have been identified in MAPT, both in intronic and exonic regions of the human MAPT. These mutations can be classified as missense mutations or splicing mutations. Most missense mutations cluster in or near the microtubule binding site of Tau, while most splicing mutations affect the splicing of exon 10 (encoding the R2 domain), and hence affect the 3R/4R ratio. While Alzheimer's disease (AD), is the most prevalent Tauopathy, no mutations in MAPT associated with AD have been identified. Brains of AD patients are pathologically characterized by the combined presence of amyloid plaques and neurofibrillary tangles [171]. Familial forms of AD, termed early onset familial AD (EOFAD) with clinical mutations in APP or PS1/2, have an early onset, and are invariably characterized by the combined presence of amyloid and Tau pathology [24, 80, 170]. These EOFAD cases, identify a causal link between APP/PS1 misprocessing and the development of Tau pathology and neurodegeneration [80, 170]. Furthermore, combined genetic, pathological, biomarker and in vivo modelling data, indicate that amyloid pathology precedes Tau pathology, and support a role for Aß as initiator and Tau as executor in the pathogenetic process of AD [80, 96, 97]. Hence, AD is often considered as a secondary Tauopathy (similar as for Down syndrome patients), in contrast to the primary Tauopathies described above. Tau aggregates in Tauopathies vary with respect to the ratio of different Tau isoforms (3R/4R), to the cell types displaying Tau aggregation and the structure of the aggregates. However, in all Tauopathies a strong correlation between progressive development of pathological Tau accumulation and the loss of the respective brain functions is observed.


Assuntos
Saúde , Tauopatias/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Humanos , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Tauopatias/patologia , Proteínas tau/química
13.
Neuron ; 97(4): 823-835.e8, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29398363

RESUMO

Synaptic dysfunction is an early pathological feature of neurodegenerative diseases associated with Tau, including Alzheimer's disease. Interfering with early synaptic dysfunction may be therapeutically beneficial to prevent cognitive decline and disease progression, but the mechanisms underlying synaptic defects associated with Tau are unclear. In disease conditions, Tau mislocalizes into pre- and postsynaptic compartments; here we show that, under pathological conditions, Tau binds to presynaptic vesicles in Alzheimer's disease patient brain. We define that the binding of Tau to synaptic vesicles is mediated by the transmembrane vesicle protein Synaptogyrin-3. In fly and mouse models of Tauopathy, reduction of Synaptogyrin-3 prevents the association of presynaptic Tau with vesicles, alleviates Tau-induced defects in vesicle mobility, and restores neurotransmitter release. This work therefore identifies Synaptogyrin-3 as the binding partner of Tau on synaptic vesicles, revealing a new presynapse-specific Tau interactor, which may contribute to early synaptic dysfunction in neurodegenerative diseases associated with Tau.


Assuntos
Doença de Alzheimer/metabolismo , Terminações Pré-Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Sinaptogirinas/metabolismo , Proteínas tau/metabolismo , Animais , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Cultura Primária de Células , Tauopatias/metabolismo
14.
Acta Neuropathol Commun ; 5(1): 99, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29258615

RESUMO

Emerging experimental evidence suggests that the spread of tau pathology in the brain in Tauopathies reflects the propagation of abnormal tau species along neuroanatomically connected brain areas. This propagation could occur through a "prion-like" mechanism involving transfer of abnormal tau seeds from a "donor cell" to a "recipient cell" and recruitment of normal tau in the latter to generate new tau seeds. This review critically appraises the evidence that the spread of tau pathology occurs via such a "prion-like" mechanism and proposes a number of recommendations for directing future research. Recommendations for definitions of frequently used terms in the tau field are presented in an attempt to clarify and standardize interpretation of research findings. Molecular and cellular factors affecting tau aggregation are briefly reviewed, as are potential contributions of physiological and pathological post-translational modifications of tau. Additionally, the experimental evidence for tau seeding and "prion-like" propagation of tau aggregation that has emerged from cellular assays and in vivo models is discussed. Propagation of tau pathology using "prion-like" mechanisms is expected to incorporate several steps including cellular uptake, templated seeding, secretion and intercellular transfer through synaptic and non-synaptic pathways. The experimental findings supporting each of these steps are reviewed. The clinical validity of these experimental findings is then debated by considering the supportive or contradictory findings from patient samples. Further, the role of physiological tau release in this scenario is examined because emerging data shows that tau is secreted but the physiological function (if any) of this secretion in the context of propagation of pathological tau seeds is unclear. Bona fide prions exhibit specific properties, including transmission from cell to cell, tissue to tissue and organism to organism. The propagation of tau pathology has so far not been shown to exhibit all of these steps and how this influences the debate of whether or not abnormal tau species can propagate in a "prion-like" manner is discussed. The exact nature of tau seeds responsible for propagation of tau pathology in human tauopathies remains controversial; it might be tightly linked to the existence of tau strains stably propagating peculiar patterns of neuropathological lesions, corresponding to the different patterns seen in human tauopathies. That this is a property shared by all seed-competent tau conformers is not yet firmly established. Further investigation is also required to clarify the relationship between propagation of tau aggregates and tau-induced toxicity. Genetic variants identified as risks factors for tauopathies might play a role in propagation of tau pathology, but many more studies are needed to document this. The contribution of selective vulnerability of neuronal populations, as an alternative to prion-like mechanisms to explain spreading of tau pathology needs to be clarified. Learning from the prion field will be helpful to enhance our understanding of propagation of tau pathology. Finally, development of better models is expected to answer some of these key questions and allow for the testing of propagation-centred therapies.


Assuntos
Encéfalo/patologia , Príons/patogenicidade , Agregação Patológica de Proteínas/complicações , Tauopatias/patologia , Humanos , Modelos Moleculares
15.
Front Physiol ; 8: 796, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29085303

RESUMO

Mitochondrial dysfunction plays a pivotal role in the progression of Alzheimer's disease (AD), and yet the mechanisms underlying the impairment of mitochondrial function in AD remain elusive. Recent evidence suggested a role for Presenilins (PS1 or PS2) in mitochondrial function. Mutations of PSs, the catalytic subunits of the γ-secretase complex, are responsible for the majority of inherited AD cases (FAD). PSs were shown to be present in mitochondria and particularly enriched in mitochondria-associated membranes (MAM), where PS2 is involved in the calcium shuttling between mitochondria and the endoplasmic reticulum (ER). We investigated the precise contribution of PS1 and PS2 to the bioenergetics of the cell and to mitochondrial morphology in cell lines derived from wild type (PS+/+), PS1/2 double knock-out (PSdKO), PS2KO and PS1KO embryos. Our results showed a significant impairment in the respiratory capacity of PSdKO and PS2KO cells with reduction of basal oxygen consumption, oxygen utilization dedicated to ATP production and spare respiratory capacity. In line with these functional defects, we found a decrease in the expression of subunits responsible for mitochondrial oxidative phosphorylation (OXPHOS) associated with an altered morphology of the mitochondrial cristae. This OXPHOS disruption was accompanied by a reduction of the NAD+/NADH ratio. Still, neither ADP/ATP ratio nor mitochondrial membrane potential (ΔΨ) were affected, suggesting the existence of a compensatory mechanism for energetic balance. We observed indeed an increase in glycolytic flux in PSdKO and PS2KO cells. All these effects were truly dependent on PS2 since its stable re-expression in a PS2KO background led to a complete restoration of the parameters impaired in the absence of PS2. Our data clearly demonstrate here the crucial role of PS2 in mitochondrial function and cellular bioenergetics, pointing toward its peculiar role in the formation and integrity of the electron transport chain.

16.
Nat Commun ; 8: 15295, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28492240

RESUMO

Tau is implicated in more than 20 neurodegenerative diseases, including Alzheimer's disease. Under pathological conditions, Tau dissociates from axonal microtubules and missorts to pre- and postsynaptic terminals. Patients suffer from early synaptic dysfunction prior to Tau aggregate formation, but the underlying mechanism is unclear. Here we show that pathogenic Tau binds to synaptic vesicles via its N-terminal domain and interferes with presynaptic functions, including synaptic vesicle mobility and release rate, lowering neurotransmission in fly and rat neurons. Pathological Tau mutants lacking the vesicle binding domain still localize to the presynaptic compartment but do not impair synaptic function in fly neurons. Moreover, an exogenously applied membrane-permeable peptide that competes for Tau-vesicle binding suppresses Tau-induced synaptic toxicity in rat neurons. Our work uncovers a presynaptic role of Tau that may be part of the early pathology in various Tauopathies and could be exploited therapeutically.


Assuntos
Terminações Pré-Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas tau/metabolismo , Actinas/metabolismo , Animais , Drosophila melanogaster/metabolismo , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Humanos , Mutação/genética , Neurônios/metabolismo , Neurônios/ultraestrutura , Domínios Proteicos , Transporte Proteico , Ratos , Transmissão Sináptica , Proteínas tau/química
17.
Sci Rep ; 7(1): 370, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28337033

RESUMO

The amyloid precursor protein (APP) modulates synaptic activity, resulting from the fine tuning of excitatory and inhibitory neurotransmission. GABAergic inhibitory neurotransmission is affected by modifications in intracellular chloride concentrations regulated by Na+-K+-2Cl- cotransporter 1 (NKCC1) and neuronal K+-Cl- cotransporter 2 (KCC2), allowing entrance and efflux of chloride, respectively. Modifications in NKCC1 and KCC2 expression during maturation of cortical cells induce a shift in GABAergic signaling. Here, we demonstrated that APP affects this GABA shift. Expression of APP in cortical cells decreased the expression of KCC2, without modifying NKCC1, eliciting a less inhibitory GABA response. Downregulation of KCC2 expression by APP was independent of the APP intracellular domain, but correlated with decreased expression of upstream stimulating factor 1 (USF1), a potent regulator of Slc12a5 gene expression (encoding KCC2). KCC2 was also downregulated in vivo following APP expression in neonatal mouse brain. These results argue for a key role of APP in the regulation of GABAergic neurotransmission.


Assuntos
Precursor de Proteína beta-Amiloide/fisiologia , Córtex Cerebral/fisiologia , Neurônios GABAérgicos/fisiologia , Transmissão Sináptica , Ácido gama-Aminobutírico/fisiologia , Precursor de Proteína beta-Amiloide/genética , Animais , Sinalização do Cálcio , Córtex Cerebral/metabolismo , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Cultura Primária de Células , Ratos Wistar , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Simportadores/metabolismo
18.
Acta Neuropathol ; 133(5): 731-749, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28083634

RESUMO

Dysregulated proteostasis is a key feature of a variety of neurodegenerative disorders. In Alzheimer's disease (AD), progression of symptoms closely correlates with spatiotemporal progression of Tau aggregation, with "early" oligomeric Tau forms rather than mature neurofibrillary tangles (NFTs) considered to be pathogenetic culprits. The ubiquitin-proteasome system (UPS) controls degradation of soluble normal and abnormally folded cytosolic proteins. The UPS is affected in AD and is identified by genomewide association study (GWAS) as a risk pathway for AD. The UPS is determined by balanced regulation of ubiquitination and deubiquitination. In this work, we performed isobaric tags for relative and absolute quantitation (iTRAQ)-based Tau interactome mapping to gain unbiased insight into Tau pathophysiology and to identify novel Tau-directed therapeutic targets. Focusing on Tau deubiquitination, we here identify Otub1 as a Tau-deubiquitinating enzyme. Otub1 directly affected Lys48-linked Tau deubiquitination, impairing Tau degradation, dependent on its catalytically active cysteine, but independent of its noncanonical pathway modulated by its N-terminal domain in primary neurons. Otub1 strongly increased AT8-positive Tau and oligomeric Tau forms and increased Tau-seeded Tau aggregation in primary neurons. Finally, we demonstrated that expression of Otub1 but not its catalytically inactive form induced pathological Tau forms after 2 months in Tau transgenic mice in vivo, including AT8-positive Tau and oligomeric Tau forms. Taken together, we here identified Otub1 as a Tau deubiquitinase in vitro and in vivo, involved in formation of pathological Tau forms, including small soluble oligomeric forms. Otub1 and particularly Otub1 inhibitors, currently under development for cancer therapies, may therefore yield interesting novel therapeutic avenues for Tauopathies and AD.


Assuntos
Cisteína Endopeptidases/genética , Enzimas Desubiquitinantes/metabolismo , Emaranhados Neurofibrilares/patologia , Tauopatias/patologia , Proteínas tau/metabolismo , Animais , Humanos , Camundongos Transgênicos , Emaranhados Neurofibrilares/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Tauopatias/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/fisiologia
19.
Front Aging Neurosci ; 8: 107, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242518

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by progressive cognitive decline leading to dementia. The amyloid precursor protein (APP) is a ubiquitous type I transmembrane (TM) protein sequentially processed to generate the ß-amyloid peptide (Aß), the major constituent of senile plaques that are typical AD lesions. There is a growing body of evidence that soluble Aß oligomers correlate with clinical symptoms associated with the disease. The Aß sequence begins in the extracellular juxtamembrane region of APP and includes roughly half of the TM domain. This region contains GXXXG and GXXXA motifs, which are critical for both TM protein interactions and fibrillogenic properties of peptides derived from TM α-helices. Glycine-to-leucine mutations of these motifs were previously shown to affect APP processing and Aß production in cells. However, the detailed contribution of these motifs to APP dimerization, their relation to processing, and the conformational changes they can induce within Aß species remains undefined. Here, we describe highly resistant Aß42 oligomers that are produced in cellular membrane compartments. They are formed in cells by processing of the APP amyloidogenic C-terminal fragment (C99), or by direct expression of a peptide corresponding to Aß42, but not to Aß40. By a point-mutation approach, we demonstrate that glycine-to-leucine mutations in the G(29)XXXG(33) and G(38)XXXA(42) motifs dramatically affect the Aß oligomerization process. G33 and G38 in these motifs are specifically involved in Aß oligomerization; the G33L mutation strongly promotes oligomerization, while G38L blocks it with a dominant effect on G33 residue modification. Finally, we report that the secreted Aß42 oligomers display pathological properties consistent with their suggested role in AD, but do not induce toxicity in survival assays with neuronal cells. Exposure of neurons to these Aß42 oligomers dramatically affects neuronal differentiation and, consequently, neuronal network maturation.

20.
Acta Neuropathol ; 131(4): 549-69, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26739002

RESUMO

Genetic, clinical, histopathological and biomarker data strongly support Beta-amyloid (Aß) induced spreading of Tau-pathology beyond entorhinal cortex (EC), as a crucial process in conversion from preclinical cognitively normal to Alzheimer's Disease (AD), while the underlying mechanism remains unclear. In vivo preclinical models have reproducibly recapitulated Aß-induced Tau-pathology. Tau pathology was thereby also induced by aggregated Aß, in functionally connected brain areas, reminiscent of a prion-like seeding process. In this work we demonstrate, that pre-aggregated Aß can directly induce Tau fibrillization by cross-seeding, in a cell-free assay, comparable to that demonstrated before for alpha-synuclein and Tau. We furthermore demonstrate, in a well-characterized cellular Tau-aggregation assay that Aß-seeds cross-seeded Tau-pathology and strongly catalyzed pre-existing Tau-aggregation, reminiscent of the pathogenetic process in AD. Finally, we demonstrate that heterotypic seeded Tau by pre-aggregated Aß provides efficient seeds for induction and propagation of Tau-pathology in vivo. Prion-like, heterotypic seeding of Tau fibrillization by Aß, providing potent seeds for propagating Tau pathology in vivo, as demonstrated here, provides a compelling molecular mechanism for Aß-induced propagation of Tau-pathology, beyond regions with pre-existing Tau-pathology (entorhinal cortex/locus coeruleus). Cross-seeding along functional connections could thereby resolve the initial spatial dissociation between amyloid- and Tau-pathology, and preferential propagation of Tau-pathology in regions with pre-existing 'silent' Tau-pathology, by conversion of a 'silent' Tau pathology to a 'spreading' Tau-pathology, observed in AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Proteínas Priônicas/metabolismo , Agregação Patológica de Proteínas/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/toxicidade , Análise de Variância , Animais , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Imuno-Histoquímica , Camundongos Transgênicos , Mutação/genética , Presenilina-1/genética , Presenilina-1/metabolismo , Proteínas Priônicas/ultraestrutura , Agregação Patológica de Proteínas/induzido quimicamente , Agregação Patológica de Proteínas/patologia , Tauopatias/genética , Transfecção , Proteínas tau/genética , Proteínas tau/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA